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Approximations-in-Optimization Problem

« The problem:

minimize f(x)

The essential problem is multidisciplinary and has special structure, but here will
consider single discipline, unconstrained optimization.

 Motivation

— Address computational expense issues of using high-fidelity approximation
models in optimization (Example: Navier-Stokes vs. Euler)

— Allow for easier integration of disciplines in multidisciplinary context
— Allow for interactive design

« Some history

— Schmit, et al. - First explicit coupling of structural analysis and nonlinear
programming (1960); Some approximation concepts for structural synthesis
(1960)

— Fleury, et al. (1989) - Approximation strategies in structural optimization
(analysis)

— Barthelemy, et al. (1993) - Overview of approximation concepts in structural
design
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Approximations-in-Optimization Problem (cont.)

e EXisting practices

— Use a variety of fidelities for models or approximations managed via
heuristics

— Examples: physical models, statistical models, move limits

» Difficulties with heuristics

— There is no guarantee that a design that promises improvement with a
low-fidelity system will yield improvement in the high-fidelity system

— It is not clear when to refine the model
— Robustness is not assured



Existing Practices: Example

Optimizer and approximate analysis optimization scheme for HSCT (Walsh, et al.)

- ana!ysis
sensitivity
Q o l
S S local approx
(& *§ |
& = | optimizer

updated design variables

« Evaluate objective, constraints, and derivatives of objectives and constraints
at the beginning of cycle; f, is a coupled Navier-Stokes and finite-element analysis

* During optimization iterations,
do ...
call optimizer with f » f; + & ffo/fx Dx (similarly for constraints g)
+ move limits
end do
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Some Recent Developments in Engineering
Approximations

 Research conducted or supported at NASA Langley:

— Design-oriented analysis and approximations

 E.g., at University of Florida / Virginia Tech (Haftka, et al.)

(Response Surface Approximations in High-dimensional Spaces Using Several Levels
of Fidelity)

— Approximation / modeling validation

« E.g.,at MIT/NASA Langley (Otto, et al.)

(Computer Simulation Surrogates for Numerical Simulations and Optimization;
Surrogate Pareto Approach to Shape Optimization)

— Managing approximation models in optimization
« E.qg., at NASA Langley / ICASE;
Notre Dame / Virginia Tech (Rodriguez, et al.)
(Augmented Lagrangian Response Surface Approximations - Model Management
Framework for General Constrained Optimization)
 Links to detailed information provided at:
http://fmad-www.larc.nasa.gov/mdob

S T




A Trust-Region Framework for Managing the Use of

Approximation Models in Optimization
(Results by Alexandrov, et al. in Journal on Structural Optimization)

This research considers general first order approximations and answers
the question “How does one make an approximation scheme robust”, in
particular:

— What does one do when the design derived with a lower-fidelity model
fails to produce improvement in the true objective?

— How does one use information about the predictive value of an
approximation to adjust the amount of optimization with a lower-fidelity
model before recourse to the higher-fidelity model?

— How does one use approximations to yield an answer to the high-
fidelity problem?

Observation:

— The framework provides a method for managing the use of models of
varying physical fidelity



Model Trust-Region Approach with General Approximations

f(x) - high fidelity, expensive model, such as analysis or simulation

a;(X) - one of the suite of lower fidelity or accuracy models of the
same physical process

High-Fidelity, :
f(x) ngpensivey Systematic
Nf(x) Model Check of
Progress AND
Model Selection
- - - — — o, - = -
: a,(x) —_ |
| ower-Fidelity, Na,(x) Computing
| Cheaper - Improved |
| Model trial step |
| |




Requirements on the Approximation Model

At each major point x,, the following model consistency conditions are
assumed to hold:

Nak(xk) = fN(Xk)
Nay (X ) = Nf(x,)

Observations:
— Consistency is only enforced at the “anchor” points.

— The gradients do not have to match exactly, but that is the assumption
made in the published paper



Requirements on the Approximation Model.
Enforcing the Consistency Conditions

* In practice, consistency is an application dependent question, but there
exist methods for enforcing consistency.

« Example: Correction by b-correlation approach. Chang et al. (1993)

Assuming no specific functional form, let f,, be a model of lower fidelity than f. Define

f(x)

P = fio(X)

b () = b(x) + Rb(x,)T (X - X,)
Use b, to scale the lower-fidelity model f:

f(x) = b(x) a(x) » by (x) f,,(x)

Given X, build

Then
3, (X) = by(X) f5(x)

satisfies the consistency conditions.
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The Algorithm with General Approximations
Choose x,1 R", D,>0
For k =0, 1, ... until convergence do
Choose a, such that a,(x,) =f (x,) and Na . (x,) = Nf (x,)

Compute an approximate solution s, to subproblem:

minimize a, (X, +S)
subjectto |[[s]|| £ Dy
Compare the actual and predicted decrease in f:
. F(X) - (XeFsy)
f (X)) - a(Xtsy)
. CylIsull ifr<ry
Xiry = {X“Sk T +sd <6 and D,y =4 min{c, lisill, Dad if 1>,

Xk otherwise l|s,|| otherwise

end do forsomer; <r,<1,¢c,<1,¢,>1




Convergence Analysis

e Observations:

— Practical performance will depend on the quality of the approximation
models and their ability to predict the behavior of f.

— Options in case of unsuccessful step:
* Improve model fidelity
* Do less optimization - reduce the trust-region radius.

« Convergence:
— We solve approximately:

minimize a, (X, + S)
subject to ||s|| £ D,

with a, - a general 1st order model.

— “Approximately” = s, must satisfy Fraction of Cauchy Decrease (FCD). Use the
variant: there exist b, C > 0, independent of k, such that s, satisfies

f(X) - Ay + 5 2 D [INF(x)[] min (D, [INF(x,)|I/C).

— The following algorithm for solving the subproblem satisfies FCD:
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Computing an approximate solution s,

Given x, 1 R", D, >0, chooset1 (0,1),a,, a,>0and sety,=x,, d,=tD,, v,=0.

Forj=0,1,..,untila;b £ ||| <a,b do
Find an approximate solution p; to:
minimize q; (y; + p) = a(y;) + Na(y;)'p + L2 p'H; p
subject to ||p|| £ d

Ily; + Il £ Dy
that satisfies FCD for a, fromy;.

Compare the actual and predicted decrease in a;:
ay(y;) - axly; + pj)
ag(y;) - qa;(y; + py)

r =

Update y; as indicated below, update d, as D,
Vie =V + (Yjer - Y))
end do

Updating y;: choose m> 0, independent of k, j, and set

Set s, =, y; +p;ifr>m

If y. =x,, theny.,,= _
Yi = X Yirt y; otherwise

Ify; * X, theny,,,= (Y; *P;jifr>0
yjotherwise




Convergence Analysis

The subproblem is itself a TR subproblem

minimize q; (y; + p) = a(y)) + Na,(y)"™p + 1/2 p™H; p
subject to ||p|| £ d
\ly; + pll £ D

Exact and approximate solutions are given in Heinkenschloss (1994).
Let py be the first acceptable step. It satisfies FCD for a, at x, and sincer >m

A (Xg) - (X, + py) 3 b ”Nak(xk)” min (dN’”Nak(Xk)”/C)

Applying the consistency conditions and assuming uniform boundedness in k of
Hessians N2%a,(x+s) for all s with ||s|| £ D, (the latter guarantees the existence of g,
independent of k for which dy3 db,) yields:

f(Xi0) - & + Py) * gb [INF(x,)[| min (D, [INF(x,)[|/C).




Convergence Analysis

e Since any steps after N decrease a, further, the step produces FCD for a, as
an approximation of f at x, and Powell’s global convergence theorem (1975)

is applicable:

o If fis uniformly bounded below, uniformly continuously

differentiable, and the Hessian approximations are uniformly
bounded, then the sequence of iterates generated by a trust-region

algorithm whose steps satisfy FCD satisfies

lim inf ||Rf(x)|| = O
k -> ¥

« The use of the acceptance criterion for y; further guarantees that

lim [|Nf(x,)|| = O
K->¥
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lllustrative Example
“Eddy-Promoter” Heat Exchanger (analyses / codes by Otto et al.)

-DPIL Preassure driven flow, DP - presure drop

—

Hot lower wall, assumed fixed heat flux | L
Goal

* Transfer heat from the lower surface into the fluid medium as efficiently as possible
Objectives

* Lower wall temperature

* Lower preassure gradient
Eddy-Promoter Configuration

* Periodic array of cylindrical obstructions

* Lowers critical parameter for onset of instability

* Improved heat transport

Governing Equations
» 2-Dincompressible Navier-Stokes




Place holder

Representative problem from:

“A Surrogate-Pareto Approach to Shape Optimization:
Level Set Geometry Description” by John C. Otto
Presented at the ICASE/LaRC Approximation Meeting
July 21---23, 1997



lllustrative Example (cont)
Preliminary Results on 1st Order Model Management

e Preliminary results on first-order model management

o Assumptions
* Model single periodicity cell (with doublets)
* For initial computation, use fixed weights for the objectives
 Usereduced problem (» 2 min. / N-S analysis)
 One function evaluation
o (at k=0, provide an initial point (3 or 6 variables))
 Generate agrid
« Input grid to the N-S code to generate the values of f; and f,
o Other ...
» Derivatives are computed via finite differences
 Lower-fidelity model is assumed to be a model with a coarser grid
* Preliminary impression
* Promising results for the chosen models



Current Research: Constraints and MDO

 Equality Constraints

— Extension of the 1st order model management framework via the
multilevel algorithm for equality constrained optimization (Alexandrov
1993)

— Global convergence results (Alexandrov, 1997)

e General NLP

— Based on Alexandrov-El-Alem extension to general NLP of the
multilevel algorithm for equality constrained optimization

« MDO
— Many research questions, dependent on problem formulations



Current Research: Some Novel Applications at MDOB

- Applications
— High Speed Civil Transport (HSCT)
— Aerospike Nozzle Design for RLV Concepts
— Rotorcraft Blade Design

e Common features:

— When used in high-fidelity mode
 Large number of variables and constraints
« Computationally expensive

* Interest in using both statistical approximations and lower-fidelity
physical approximations



Novel Applications: HPCCP HSCT

(Weston, et al.)

e Problem Features:

— Components:
» Multiblock Navier-Stokes CFD analysis & sensitivity
 Adaptive FEM structural analysis & sensitivity
 Many other disciplines

— Computationally intensive:
 Medium-fidelity
* One aeroelastic function evaluation (multidisciplinary analysis
of » 5 Gauss-Seidel iterations) requires 6 hours on a

heterogeneous network of 4-5 machines; » 20 hours on a
dedicated machine

. High-fidelity

* One aeroelastic function evaluation is expected to require 5-6
days on a dedicated machine; 2 days on a parallel machine; 3-6
hours on 64-processor machine (O(102) hours total)

e



Novel Applications: HSCT - Key Steps

Surface Shape |
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Novel Applications: Rotorcraft Blade Optimization
(Walsh, et al.)

 Problem Features:
— Large number of design variables and constraints
— A multilevel approach to solution
— Computationally intensive
— One function evaluation requires » 30 minutes

Integrated Aerodynamic/Dynamic/Structural (IADS) Solution Strategy

Optimize for global behavior
(aerodynamics, dynamics, strains)

N

Optimize Optimize Optimize
Cross section Cross section Cross section
radial location 1 radial location 2 radial location 3




Integrated Aerodynamics/Dynamics/Structures (IADS)

UPPER LEVEL.:
optimize performance
and dynamics

Compromise between stiffness
required by upper level and
attainable in lower level

LOWER LEVEL.:
structure at

radial location i




Novel Applications: Aerospike Engine Design
(Korte, et al.)

e Problem Features:

— Components:
 Aerodynamics, structures, trajectory

 High accuracy required due to sensitivity of SSTO vehicle
performance

 Minimize GLOW (Gross Lift-Off Weight) subject to structural
constraints

 One case: 16 variables, 596 structural constraints
« Multidisciplinary feasible formulation used
— Computationally intensive
 Low-fidelity
 Medium-Fidelity
» High-fidelity
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AEROSPIKE ENGINE
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Summary

 Extensive, long-standing research on approximations in
engineering optimization

 Benefit of research on approximations

— An opportunity to adapt state-of-the-art optimization algorithms to
practical computational engineering

* Introduced a framework for managing 1st order models in
optimization
— Globally convergent
— Arbitrary models with consistency requirements

« Ongoing research - open questions:

— Usefulness in practice
» Testing on increasingly realistic problems
* Resolving consistency conditions in practice

— MDO
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